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The Neumann and Young equations for nematic contact lines
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Department of Chemical Engineering, McGill University, 3610 University Street,
Montreal, Quebec, Canada H3A 2B2; e-mail: inaf@musicb.mcgill.ca

(Received 26 February 1999; in � nal form 19 September 1999; accepted 22 September 1999)

The Neumann and Young equations for three-phase nematic contact lines have been derived
using the momentum balance equation and classical liquid crystal physics theories. The novel
� nding is the presence of bending forces, originating from the anchoring energy of nematic
interfaces, and acting on the contact line. The classical Neumann triangle or tensile force
balance becomes in the presence of a nematic phase the Neumann pentagon, involving the
usual three tensile forces and two additional bending forces. The Young equation that
describes the static contact angle of a � uid in contact with a rigid solid is again a tensile force
balance along the solid, but for nematics it also involves an additional bending force. The
e� ects of the bending forces on contact angles and wetting properties of nematic liquid
crystals are thoroughly characterized. It is found that in terms of the spreading coe� cient,
bending forces enlarge the partial wetting window that exists between dewetting and
spontaneous spreading. Bending forces also a� ect the behaviour of the contact angle, such
that spreading occurs at contact angles greater than zero and dewetting at values greater
than p. Finally, the contact angle range in the partial wetting regime is always less than p.

1. Introduction Neumann equation or Neumann triangle [1, 7], which

in the absence of inertia and mass transfer gives theWetting and spreading phenomena arise during manu-

facturing and characterization of many material systems. balance of tensile forces that exist at the three intersecting

phases. The surface stress tensors involved in the classicalManufacturing examples include � lm coatings, paints,

� bre � nishings, and multiphase materials [1]. Material Neumann equation contain only normal components,

that is, tensile stresses. Since the surface stress tensorcharacterization includes contact angle measurements,
and the Whilhelmy balance [2]. The surface properties of NLC contains bending stresses arising from the

anisotropic surface anchoring energy [5], the classicalof liquid crystals are also important for many display

applications [3], and in material systems such as meso- Neumann equation is incomplete for NLC. When one

of the phases is a solid, the projection of the tensilephase carbon–carbon � bre composites where the adhesion

between the two phases strongly a� ects the mechanical forces along the three intersecting phases onto the solid

phase gives the well known Young equation [8]. Givenproperties. Despite the importance of surface phenomena

in liquid crystals [3, 4] their theoretical description is its origin, the Young equation is also incomplete when

NLCs are involved. Wetting properties of � uids modelledoften based on models for isotropic � uids, neglecting
certain aspects of the anisotropic nature of liquid crystals. by the Young equation are based on interfacial tensions,

but as shown below, for NLCs they will also involve theThus there is a strong need to develop mechanical models

that describe anisotropic surface thermodynamics and anisotropic surface anchoring energies.

The e� ect of bending stresses may appear to be modesttransport phenomena. The present paper is concerned

with deriving macroscopic equations that model the in most circumstances and material systems, since for low

molar mass NLCs the isotropic surface tension is usuallywetting properties of nematic liquid crystals (NLCs). A

previous paper [5] considered the interfacial transport three orders of magnitude greater than the anchoring
energy. Important exceptions are cases involving inter-phenomena in nematic interfaces.

A frequent phenomenon that arises in surface- faces between a NLC and its isotropic phase, since

interfacial tensions are comparable to anchoring energiesdominated problems is the presence of a contact line at

which three di� erent phases intersect. The three-phase [9, 10]. Thus when describing the nematic–isotropic phase

transition next to a solid surface the bending stressescontact line arises in many practical problems, including

� otation, � uid displacement, and wetting of solid surfaces may be as important as the tensile stresses. Other

nematics, such as nematic polymers and carbonaceous[1, 2, 6, 7]. The theoretical description of the momentum
balance equation at the contact line is known as the mesophases, may reveal anchoring energies comparable
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196 A. D. Rey

to interfacial tensions. Thus there is a need to know the solve and understand practical problems in interfacial
phenomena involving nematic liquid crystals. One suchnature and importance of the terms that are neglected

when using the classical Neumann and Young equations practical problem, the wetting properties of nematic
liquid crystals, is the topic of this paper.for isotropic � uids.

The objectives of this paper are: (1) to derive the Assume that a nematic liquid crystal is in region RN ,
and that another material a is in region R

a
. The inter-Neumann equation at a three-phase contact line, when

one of the phases is a NLC; (2) to derive the Young face between the two regions is characterized by a
unit normal kNa, directed from the RN phase towardsequation for NLCs; (3) to characterize the wetting

regimes for nematic liquid crystals. Dynamical wetting the R
a

phase. The surface stress tensor tNa is given by
the sum of the normal (tension) tNaN and the bendingphenomena [8], curvature line tension e� ects [8], and

scalar order parameter e� ects [11] are beyond the scope tNaB contributions [5]:
of this paper.

The organization of this paper is as follows. Section 2 tNaN = FNas INas ; tNaB = Õ
dFNas

d(n ¯ kNa)
Is ¯ nkNa (1 a,b)

presents a derivation of the surface stress tensor for a
nematic liquid crystal. Section 3 contains the derivation where Is is the surface idem factor for the N–a interface,
of the Neumann equation for a three phase contact line and FNas is the surface free energy density, here taken to be
involving a NLC. Section 4 presents a derivation of a function of n ¯ kNa. An example of a simple and widely
the Young equation for NLCs. Section 5 discusses the used constitutive equation for FNas is the Rapini–Papoular
wetting regimes of NLCs, and gives thresholds for the expression [15, 16]:
onset of dewetting, partial wetting, and spreading.

FNas = cNai s +cNaa n (n ¯ kNa)2 (2)Section 6 gives the conclusions.

where cNai s is the isotropic interfacial tension and cNaa n is
2. The nematic surface stress tensor the anchoring energy [3, 4, 16]. The sign of cNaa n is

In this section we derive the equation for the nematic positive (negative) when the orientation of the interface’s
surface stress tensor for an interface involving a uniaxial easy axis is planar (homeotropic) . For low molar mass
rod-like nematic liquid crystal of constant order para- NLCs the isotropic surface interfacial tension cNai s is the
meter [11]. The system is isothermal, and both phases order 10 erg cm Õ 2 , while the anchoring energy cNaa n varies
are incompressible. The interface is assumed to be elastic. in the range 10 Õ 4 –1 erg cm Õ 2 [3]. The nematic–isotropic
The orientation in the NLC is given by the unit vector interface of low molar mass materials has a cNai s of
n, or director. the order 10 Õ 2 erg cm Õ 2 which appears to be of the same

The static limit of the interfacial linear momentum order of magnitude as the anchoring energy of the
balance equation for an interface between a uniaxial rod- same interface [3, 9, 10]. It is also interesting that the
like nematic liquid crystal and an isotropic � uid was � rst anchoring energy in the isotropic phase of 5CB is zero
presented by Jenkins and Barratt [12, equation (3.40)]. only when the temperature is several degrees above the
The same equation was later derived by Ericksen nematic–isotropic transition temperature [3].
[13, equation (72)] in his review paper on the equilibrium Parametrizing the interface with orthonormal unit
theory of liquid crystals, where it is indicated that the surface base vectors (i1 , i2 ) the normal and bending
equation expresses balancing stress with surface tension. stresses become:
Later Virga [14, equation (2.29)] investigating the shape
of droplets in contact with isotropic � uids derived the tNaN = FNas INas ; tNaB = Õ

dFNas

d(n ¯ kNa)
Is ¯ nkNa

same equation that describes the static limit of the inter-
facial linear momentum balance equation for an interface

tNaN = [ cNai s +cNaa n (n ¯ kNa)2 ] [ i1 i1 +i2 i2 ] (3 a)
between a uniaxial rod-like nematic liquid crystal and

tNaB = BNa1 3 i1 kNa +BNa2 3 i2 kNa (3 b)an isotropic � uid. Recently Rey [5] identi� ed the origin,
nature, and physical signi� cance of the surface stress

where the bending coe� cients, BNa1 3 , BNa2 3 , are given by:
tensor that appears in the static limit of the interfacial

BNa1 3 = Õ 2cNaa n (n ¯ kNa)(n ¯ i1 );linear momentum balance equation, for an interface
between a uniaxial rod-like nematic liquid crystal and

BNa2 3 = Õ 2cNaa n (n ¯ kNa)(n ¯ i2 ). (4 a,b)
an isotropic � uid. In particular, it was shown that for
such interfaces the surface stress tensor is not in general The bending coe� cients are proportional to the

anchoring energy and to the director’s projections alonga 2 Ö 2 tangential symmetric tensor as for isotropic inter-
faces, and a clear distinction of the nature and origin of the unit normal and along the surface base vectors. In

the Rapini–Papoular model the largest magnitudes oftension stresses and bending stresses was established.
The results obtained in [5] are necessary in order to the bending coe� cients arise at p/4 angles from the
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197T heory of nematic contact lines

interface, and they vanish at the planar and homeotropic and pointing into them. The unit vectors (kA B , kB C, kCA )
are orthogonal to the A–B, B–C, and C–A dividingorientations. In matrix form, the 2 Ö 3 surface stress

tensor tNa is: surfaces and oriented such that when turning a right
handed screw in the sense de� ned by them it advances
in the positive direction of the unit tangent vector t totNa = CcNa 0 BNa1 3

0 cNa BNa2 3 D . (5)
the contact line. With this choices the tangent vectors
are given by: nij = Õ t Ö kij ; ij = AB, BC, CA. The con-

Clearly the surface stress tensor is asymmetric. In the
tact angle measured through phase C is de� ned by:

presence of interfacial � ows shear stresses arise, but this
cos h = nB C ¯ nCA .

paper is restricted to statics. Bending stresses are intrinsic
The momentum balance equation at the contact line

to nematic interfaces and result in forces normal to the
is given by [1, 7]:

interface even in the absence of curvature.

�
i=A B , B C, CA

ni ¯ ti = 0 (6)
3. The Neumann equation for three-phase nematic

A derivation of equation (6) is given in the Appendix.contact lines
The classical Neumann equation takes into accountThe macroscopic equilibrium contact angles at which
only isotropic normal surface stresses (i.e., ti = ciIis ;three � uid phases meet is determined by the balance of
i = AB, BC, CA) and its expression is:forces acting on the contact line. The Neumann equation

for three-phase contact lines is the expression of the cA B nA B +cB CnB C +cC A nCA = 0 (7)
force balance equation at the contact line, neglecting

where (cA B , cB C, cC A ) are the interfacial tensions for themass transfer and inertia of the contact line [7, 17].
three interfaces. This equation is invalid when one ofFigure 1 shows a typical example of a three phase
the phases is a nematic liquid crystal. The correct(A–B–C) contact line (L). The contact line is the
equation is derived below.common line formed by the intersection of the A–B,

Let C now denote a uniaxial NLC. In this case theB–C, and C–A dividing surfaces. The unit vectors
director orientation at the contact line is de� ned and(nA B , nB C, nCA ) are normal to the contact line and are
given by n. The appropriate surface stresses are given bytangent to the A–B, B–C, and C–A dividing surfaces,
equations (3, 4) with a = B, C. Replacing these expressions
into the momentum balance equation we get:

cA B nA B +cB N nB N +cNA nNA +BNA kNA +BB N kB N = 0

(8)

where the interfacial coe� cients involving the nematic
phase are given by:

cB N = cB N
i s +cB N

a n (n ¯ kB N )2 ;

cNA = cNA
i s +cNA

a n (n ¯ kNA )2 (9 a,b)

BNA = Õ 2cNA
a n (n ¯ kNA )(n ¯ nNA );

BB N = Õ 2cNB
a n (n ¯ kNB )(n ¯ nNB ). (9 c,d )

The Neumann equation for three-phase contact lines
involving a NLC contains new contributions in the
tension forces and additional terms accounting for
bending forces. At the contact line the tension forces are
orthogonal to their respective bending forces. The total
number of forces has increased from three to � ve, and
the Neumann triangle for isotropic � uids has becomeFigure 1. Schematic representing a three-phase (A–B–C) con-
for NLCs the Neumann pentagon.tact line (L) geometry. The contact line is the common

line formed by the intersection of the A–B, B–C, and C–A
dividing surfaces. The unit vectors (nA B , nBC , nCA ) are 4. The Young equation for nematic contact angles
normal to the contact line and are tangent to the A–B, When phase A is a rigid solid, the projection of the
B–C, and C–A dividing surfaces, and pointing into them.

Neumann equation onto the tangent to the solid surfaceThe unit vectors (kA B , kBC , kCA ) are orthogonal to the
is known as the Young equation [2, 8]. Figure 2 de� nesA–B, B–C, and C–A dividing surfaces, and to the contact

line. the geometry, where h is the contact angle through the
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198 A. D. Rey

whose solution in terms of the contact angle h is:

tan Ah

2B =
2BB N +[ (2BB N )2 Õ 4S(S +2cB N )] 1 /2

2(S +2cB N )
.

(14 b)

When BB N = 0, equation (14 b) properly reduces to the
classical result: cos h = S/cB N +1. For NLC the contact
angle is a function of the bending coe� cient BB N in

Figure 2. Schematic of a three-phase contact line, involving addition to S and cB N. Since the bending coe� cient
a nematic liquid crystal (N), a rigid � at solid (S), and an

depends on the director orientation at the surface itisotropic � uid B. h is the equilibrium contact angle
follows that the equilibrium contact angle for NLC isthrough the nematic liquid crystalline phase.
not given in terms of thermodynamic parameters as
in the case of isotropic � uids. By setting BB N = 0 in

A phase. In the absence of anchoring energies, projecting equation (14), it is seen that a contact angle exists when
the classical Neumann equation (7) in the nSB direction Õ 2cB N < S< 0, but for � nite bending coe� cients the
gives the famous Young equation [8]: range of existence of the contact angle is now a function

of BB N .cSB Õ (cB A cos h +cA S )= 0. (10)

If phase A is a NLC, Young’s equation obtained by 5. Wetting transitions
projecting equation (8) in the nSB direction becomes: For two isotropic � uids (A, B) Young’s equation (10)

in conjunction with equation (12) predicts three wettingcSB Õ (cB N cos h +cNS ) Õ BB N sin h = 0. (11)
regimes, according to the magnitude of the spreading

The Young equation for NLC contains additional contri- coe� cient S:
butions in the tension terms and a new term originating

S= cA B (cos h Õ 1). (15)from bending forces. When the anchoring energies are
zero we recover the classical Young equation.

When discussing wetting regimes by considering the
It is useful to discuss contact angles and wetting contact angle, the wetting regimes for isotropic � uids

properties using the spreading coe� cient S [2, 7, 8]. For are found to be [18]:
two isotropic � uids (A, B) in contact with a solid the

(a) If S> 0, there is no contact angle h that satis� esspreading coe� cient S is:
equation (15) and, as stated above, � uid A spreads

S= cSB Õ cB A Õ cA S. (12)
over the solid displacing � uid B.

(b) If Õ 2cA B < S < 0, there is a � nite contact angle hIf S > 0 � uid A will spread spontaneously over the solid
that satis� es equation (15), the contact line isdisplacing � uid B; if S< Õ 2cB A a thin � lm of A will
stationary and, as stated above, A partially wetsspontaneously dewet the solid by displacement A by
the solid.� uid B; and if Õ 2cB A < S < 0 � uid A partially wets

(c) If S < Õ 2cA B , there is no value of h that satis� esthe solid. The contact line at which phases A and B
equation (15) and, as stated above, � uid A willmeet will move spontaneously over the solid if S> 0
dewet the solid, being displaced by � uid B.or if S< Õ 2cB A . The common line is stationary

if Õ 2cB A < S< 0. As shown below for nematic liquid
The presence of bending forces in nematics modi� es

crystals bending stresses modify these results.
all these results. To analyse the parametric dependence

The spreading coe� cient for a nematic liquid crystal
of the spreading, partial wetting, and dewetting regimes

(N) and an isotropic � uid (B) in contact with a solid
we consider the discriminant in equation (14):

surface is:
D(S)= (2B)2 Õ 4S(S +2cB N ). (16)

S= cSB Õ cB N Õ cNS. (13)
The transitions between the three regimes occur at two

As explained above, the spreading coe� cient captures
thresholds values of S (Ss , Sd ), for which D= 0. The

the ability of N to spread over the solid, displacing
predicted regimes and threshold values of S are as

� uid B. A discussion of the spreading coe� cient for
follows:

liquid crystals can be found in the textbook of Sonin
(1) Spontaneous spreading of N over the solid[3, see page 64]. In terms of the spreading coe� cient,

displacing � uid B occurs if S > Ss > 0:Young’s equation becomes:

S= cB N (cos h Õ 1) +BB N sin h (14 a) Ss = Õ cB N +[ (cB N )2 +(BB N )2 ] 1 /2 > 0. (17)
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199T heory of nematic contact lines

(2) Dewetting of N from the solid by displacement term that in� uences the wetting behaviour of such
nematic liquid crystals surfaces. In terms of the spread-by � uid B occurs if S< Sd < Õ 2cB N :
ing parameter, bending forces increase the window of

Sd = Õ cB N Õ [ (cB N )2 +(BB N )2 ] 1 /2 < Õ 2cB N.
partial wettability by delaying the onset of spontaneous

(18) spreading and dewetting. For spontaneous spreading the
spreading coe� cient of nematics has to be greater than

(3) Partial wetting occurs if Sd < S< Ss . a positive value, instead of zero for isotropic � uids. For
In terms of the spreading coe� cient, the e� ect of the dewetting, the spreading coe� cient of a nematic is

bending forces is to enlarge the partial wetting window, always smaller than for the isotropic � uid. The contact
such that S has to be positive for spontaneous spreading angles at these transitions are also modi� ed by the bend-
and less than Õ 2cB N for dewetting. In addition, the ing forces. At the spreading-partia l wetting transition
contact angles at the transitions are also a� ected by the the contact angle for the nematic case is positive. The
bending stresses. For isotropic � uids the contact angle contact angle at the dewetting–partial wetting transition
predicted at the partial wetting–spreading transition is is always less than p radians. Thus the total range of
zero [2, 8] but for NLC is: possible contact angles in the partial wetting regimes is

less than p radians.
cos hs =

{cB N +[ (cB N )2 +(BB N )2 ] 1 /2 }2 Õ (BB N )2

{cB N +[ (cB N )2 +(BB N )2 ] 1 /2 }2 +(BB N )2 The ability of bending forces to modify the wetting
and spreading abilities of nematics depends on the
relative magnitude of the anchoring energy with respect(19)
to the isotropic interfacial tension. For low molar mass

which shows that at the threshold the contact angle hs is
nematics typical anchoring energies on many interfaces

positive de� nite: hs > 0. At the partial wetting–dewetting
are signi� cantly smaller than isotropic interfacial

transition the contact angle hd for isotropic � uids is p
tensions, and bending e� ects may be ignored. Modelling

[2, 8]. For NLC the contact angle hd at this transition
and interpreting experimental data for other materials

is:
and experimental conditions in which the isotropic and
anisotropic contributions to surface tension are com-

cos hd =
{cB N Õ [ (cB N )2 +(BB N )2 ] 1 /2 }2 Õ (BB N )2

{cB N Õ [ (cB N )2 +(BB N )2 ] 1 /2 }2 +(BB N )2 parable, require the use of the governing equations
presented here.

(20)

Financial support of the Natural Sciences andwhich for a � nite bending coe� cient shows that hd is
engineering Research Council (NSERC) of Canada isalways greater less than p.
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within R, k is the outward unit normal to S, m is the
outward unit normal to C and tangent to S, T is the

(A.6)
stress tensor and t is the surface stress tensor. Using
Green’s theorem the � rst integral in equation (A.1) can which is equation (6).
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